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The smallest at most bimolecular chemical reaction system with Hopf bifurcation is pre- 
sented. First the notion smallest reaction system is explained. Since the lowest number of inter- 
mediates has the highest priority in this characterization and since it has already been shown 
that three-component systems can have a Hopf bifurcation [1], the smallest reaction system 
must contain three intermediates. On the basis of a sufficient condition for a Hopf bifurcation 
in three-dimensional systems it is possible to find one reaction system which is according to 
the given characterization, the smallest one. In the first part of this paper it is shortly pictured 
and in the second part a more extensive proofthat this system is really the searched smallest one 
is given. 

1. I n t r o d u c t i o n  

Start ing-point  of  our considerations is the problem of  the relation between the 
structural  complexity and the dynamical  behavior of  a system. In a pioneering 
work, Gardne r  and Ashby [2] investigated the probabili ty of  stability as a funct ion 
of  the number  of  variables and the linear links between them; for related problems 
cf. [3-5]. Of  course stability is only one point for a classification of  the dynamical  
behavior,  other  ones could be oscillations or chaos. Sprott  [6] investigated the prob- 
ability of  the occurrence of  fixed points, limit cycles or chaos inside the stable 
region of  the parameter  space for about 4 x 107 maps and ordinary  differential  
equations and found, e.g., that  in low-dimensional, low-order polynomial  maps  the 
probabil i ty  of  chaos is decreasing with increasing dimension and order  of  the sys- 
tem. Despite of  a high number  of  variables and nonlinearities complex chemical 
systems, e.g. biochemical reaction networks, often show rather  simple dynamics.  It 
has been pointed out that  there are two mechanisms, which are responsible for the 
reduct ion of  system variables in extremely wide system classes [7]. These are the 
very different t ime scales and mathematical  principles which allow to describe the 
behavior  of  the system near  a bifurcation point by a small number  of  order  param-  
eters. It has been argued that  a strong separation of  time constants  observed in bio- 
chemical networks could be a result of  evolutionary optimization [8]. 
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However, it seems to be easier to concentrate on minimal systems for a certain 
kind of  dynamical behavior, which perhaps makes the necessary conditions for its 
occurrence more evident than it is to find and analyse general mechanisms of  model  
reduction. We confine ourselves to chemical reaction systems and in the present 
paper we look for the mathematically smallest system with a Hopf  bifurcation. 
According to a result of  Hanusse [9] a two-component  chemical reaction system 
with only mono-  and bimolecular reactions cannot show limit-cycle oscillations. 
That  means, a minimal system for this kind of behavior either needs more than two 
agents or a reaction which is at least three-molecular. 

A simple model  in which primarily the number  of  components  is low has been 
formulated by Selkov [10] in a theoretical investigation of  glycolytic oscillations. It  
contains a constant  influx of  a compound X, a monomolecular  efflux of  a com- 
pound  Y and a three-molecular positiv feedback described by a term X Y  2. How- 
ever, the occurrence of a three-molecular reaction is very improbable without  
suitable catalysts. This raises the question for the smallest system with only mono-  
and bimolecular reactions which can show oscillating concentrations. Hanusse [1] 
gave an example for a nice symmetric three-component system with Hopf  bifurca- 
tion. But it consists of 8 bimolecular reactions and is not  the smallest one. 

In this paper first a definition of the smallest at most  bimolecular system in the 
mathematical  sense is given. On the basis of a necessary and sufficient condition it 
is possible to find the model for the minimal oscillating chemical reaction system 
with a Hopfbifurcat ion.  Since in its differential equations only one quadratic term 
appears, this system seems to be well suited for analytical treatment.  This paper 
only presents first results such as steady state solutions and the linear stability anal- 
ysis, a bifurcation diagram and the estimation of the frequency near the Hopf  bifur- 
cation point. 

2. The smallest system with Hopfbifurcation which only consists o fmono-  

and bimolecular reactions 

The smallest at most  bimolecular reaction system with Hopf  bifurcation in the 
mathematical  sense can be characterized by the following 4 features with descend- 
ing importance: 

1. lowest number  of  reactants, 

2. lowest number  of  quadratic terms, 

3. minimal  number  of  parameters,  i.e. minimal number  of  reactions, 

4. minimal  number  ofbimolecular  reactions. 

It  has already been shown that two-component  systems with only mono-  and bimo- 
lecular reactions cannot  show limit-cycle oscillations [9,11], while a three-compo- 
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nent system with only bimolecular reactions can do so [1]. That's why the smallest 
system must contain three intermediates. 

The starting-point for the following considerations is a sufficient condition for 
a Hopfbifurcation in three-dimensional systems: 

Let  

/~3 _ ThE _ KA - D = 0 (1) 

be the characteristic polynom for  a three-component system, where T, D indicate the 
trace and determinant, respectively. Then a H o p f  bifurcation takes place at the tran- 
sit through the surface 

T K  + D = 0 (2) 

i fT,  K ,D<O.  

This can be proven as follows: 
Let 

- T 3 TK D 

q -  27 6 2 '  (3) 

- 3 K -  T 2 
P - 9 (4) 

At the surface (2) it is 

+p3>0. (5) 

According to the Cardanicformula the characteristic polynom in this case has one 
real and two (conjugate) complex roots. The real root reads 

)~real = ~ / - q  q- v / ~  d- p3 d- ~ / - q  - v / ~  + p3 q - T -~. (6) 

Because first Areat < 0 if TK = - D  and T, K < 0 and second the stability changes 
according to the Hurwitz criterion, the conjugate complex root becomes purely ima- 
ginary, i.e. a Hopf  bifurcation takes place at this surface. Condition (2) is also 
necessary for a Hopf  bifurcation because it follows immediately from expanding 
the characteristic polynomial 

()~ + iw)()~ - iw)()~ - )~real) = O ,  (7) 

where w denotes the imaginary part of the conjugate complex eigenvalue. 
The present study shows that there is exactly one system which follows from 

the given characterization of the smallest reaction system with Hopf  bifurcation. 
Its mechanism is depicted in scheme 1. 
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X X Y 

x Z  k2 

x A ° Y 

Scheme 1. React ion scheme of the smallest  chemical react ion system with H o p f  bifurcat ion.  A ° 
denotes outer  reactants  and for thermodynamical  reasons it must  represent at  least two different  

substances. 

The dynamics of the system is governed by the differential equations: 

2 = (N1A - k4).e~ - k 2 . ~ Y  , 

}" = -k3 Y + ksZ , 

2 = k 4 X  - k 5 Z  , (8)  

where A denotes the fixed concentration of the outer reactant of the autocatalytic 
reaction. It has two steady states: 

1. 21  = ~'~1 = Z l  ~--- 0 ,  (9) 

( k l A  - k4~ k l A  - k4 ff~2 ~-- (kl~'-~- -- k4~k3  . 
2. 2 2 = \  -ff2-k4 j k 3 ,  ~r2-- k2 ' ~,, k2k5 } (10) 

At the first and second steady state the coefficients of the characteristic polynom 
(1) are 

T1 = k l A  - k 3  - k 4 - k 5 ,  (11) 

K1 = (el  A - / 4 ) ( k 3  q-- k5)  - k3k5 , (12) 

D1 = (klA - k4)k3ks , (13) 

T2 = -k3 - ks, (14) 

K2 = -k3ks ,  (15) 

02 = (k4 - klA)k3ks. (16) 

Since 

T1Kl + Dx >0 if klA <k4, (17) 
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T2K2 + D2 = k3ks(k3 + k4 + k5 - k lA)  , (18) 

it f o l l o w s  f r o m  the  H u r w i t z  c r i t e r i o n  w i t h  ( 1 1 ) - ( 1 6 )  t h a t  t he  f i rs t  s t e a d y  s t a t e  is 

s t ab l e  w i t h i n  the  r a n g e  O<~kiA<k4 a n d  the  s e c o n d  o n e  w i t h i n  the  r a n g e  

k4 <klA < k 3  -t- k4 -t- ks. 
The bifurcation diagram is given in fig. 1. 

k2 

1 t k~ 
f 

I k 

/ k 2 k~ 

k3+k~+k 5 kIA 

Fig. 1. Bifurcation diagram for the smallest chemical reaction system with Hopf  bifurcation. 
stable, - - -  unstable steady states. 

o ~  o Y s ° Y 5 

Z S ~  zS Z s 

0 0 0 0 0 0 

O! 
Z s s s 

X s X s 
Fig. 2. Numerical integration at both sides of the Hopf bifurcation point. Parameter values: 
k2 = k3 = k4 = ks = 1. According to (20) and (10) the Hopf  bifurcation is at kl A = 3 and the concen- 
trations at the second steady state are: -Y(2 = ~r2 = 22 = klA - 1. Values for klA: (a) 2.95, (b) 3.0, 

(c) 3.05, (d) 3.1, (e) 3.15, (0 3.2. 
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The system has two bifurcation points: 

1. Transcritical bifurcation at klA = k4, (19) 

2. Hopf  bifurcation at klA = k3 + k4 + ks. 

The frequency of the limit cycle near the Hopf  bifurcation follows from the Eigen- 
values of the Jacobian at the bifurcation point. It is 

A1 = -k3 - k s ,  (21) 

~2/3 = ± i  kv/~3k5 • (22) 

Therefore the angular frequency w is 

co= kv/~3k~ (23) 

and the time of period T = 2rr/w. 
Figure 2 gives results of numerical integrations of this system at both sides of 

the Hopfbifurcation point. 

3. P r o o f  of  the hypothesis  

In three-component systems for a given component X only 4 types of quadratic 
nonlinearities are possible: 

2 . . . .  - X 2 , 

Jr" . . . .  + y 2  

k . . . .  + x r ,  

J( . . . .  + YZ.  (24) 

In (24) X denotes the concentration of one of the three reactants, Y denotes one 
of the two other and YZ the product of the two other components. The signs of the 
terms y2 and YZ follow from the condition that in chemical reaction systems all 
terms at the right side of a differential equation of a special reactant which do not 
contain the concentration of this reactant must be larger than or equal zero. Other- 
wise the trajectory of the system could leave the subspace of positive concentra- 
tions. The term X 2 enters (24) with negative sign because three- and higher 
molecular reactions are excluded. For only one of these four terms (XY) both signs 
are possible, since X + Y reacting e.g. to Y+ outer reactant gives the negative sign 
and reacting to X + X gives the positive sign. 

We are looking for a three-component system which contains only one quadra- 
tic nonlinearity at the right side of (J(, I", ;g) r = f ( X ,  Y, Z). First, we can state that 
the terms y2 and YZ at the right side of(24) cannot be the only quadratic nonlinear- 
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ity in the whole three-dimensional system. Second, from all bimolecular reactions 
yielding the terms X 2 and X Y ,  there are only two different ones possible so that  
only one quadratic term appears at the right side of  the differential equation 
system: 

(a) X + X - +  X + outer reactant ,  

X + X--,- outer reactants,  

(b) X + Y--~ Y + outer reactant.  (25) 

It will be shown now that in case (25a) the term T K  + D is always larger than 
zero, so that  a Hopf  bifurcation can be excluded: 

The most  general case for such a system is: 

J( = a l A  -4- a 2 X  d- a3 Y + a4Z  - a5 X2 , 

~Y = b i B  + b 2 X  - b3 Y + baZ , 

= cl C + c 2 X  + c3 Y - caZ (26) 

with 

ai, bi, ci>/O for i = 1,2, 

a3, a4, b4, £3 ~ 0  , 

a5, b3, c4 :>0  . 

Here A, B, C denote the concentrations of  constant outer reactants and ai, bi, ci 

denote rate constants. For  the existence of a finite steady state it is necessary that  
the terms -b3 Y and - c a Z  have a negative sign. 

The Jacobian of  system (26) may be written as 

( <  /> 

a l l  a12 a13 

J = 
>1 < >~ 

a21 a22 a23 
(27) 

1> /> < 

t a31 a32 a33 J 

The signs of  the elements at a steady state are indicated by the signs above them. 
For  the evaluation of  the sign of all = ± a 2  --  2asX it has been taken into account 
that  in any mono-  and bimolecnlar reaction system all the elements of  the trace of  
the Jacobian at the steady state must be smaller or equal zero [1]. It follows that  
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T = al l  + a22 + a33, (28) 

>i >/ ~> ~< ~< < 

K = a~2a21 + a13a31 4- a23a32 - al ia22  -- a i la33 -- a22a33, (29) 

~< ~> >/ 

D = a11a22a33 q- a12423a31 -+- a13a21a32 

/> 7> ~> 

- a12a21a33 - al la23a32 - a13a22a31. (30) 

The signs over all the terms denote in each case the sign of  the whole term, i.e. o f  
the term including its p l u s  or m i n u s  sign. A necessary condit ion for Ho  9f bifurca- 
tion is T, K, D < 0. It can be seen that  for D < 0 it is necessary that  

a l l < 0 ,  (31) 

a11a22 > a12a21, (32) 

a11a33 > a 1 3 a 3 1 .  (33) 

With  (28)-(30) one obtains: 

T K  + D = a l l  (a12a2~ + a13a31 --}- a23a32 - -  a~1a22 - a11a33 - -  a22a33 

+ a22(a12a21 + a13a31 -t- a23a32 -- a11a22 -- a11a33 -- a22a33) 

-4- a33(a12a21 q- a13a31 -q- a23a32 -- a11a22 -- a11a33 -- a22a33) 

-4- a11a22a33 -4- a12423a31 q- a13a21a32 

- -  a12a21a33 -- a11a23a32 -- a13a22a31 

> 0  (34) 

The result T K  + D > 0 holds since: 
(a) the sum of  the underl ined terms is zero; 
(b) the first summand  of(34) is larger than zero because of(31-33);  
(c) a22(K - a13a31 ) > 0 and a33 ( K  - a12a21) > 0 must  be true for K < 0; 
(d) a12a23 a31 >t 0 and a13a21 a32 i> 0. 
Therefore,  in the case (25a) a Hopfb i furca t ion  is not  possible. 

System (26) is also the most  general system in the case (25b) except for the quad- 
ratic te rm which is now - a s X Y  (cf.(A. 1)). In particular its Jacobian is the same as 
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(27), with the only difference that a12 = a 3 -  asX can also become negative. 
Obviously, it has necessarily to be negative, because otherwise the proof that a 
Hopfbifurcation is never possible would exactly be the same as for the case (25a). 

In order to find the smallest oscillating system, it is also necessary to search for 
the minimal number of parameters, i.e. the minimal number of reactions. (cf. point 
3 in the characterization of the smallest system.) The easiest way to find it is to suc- 
cessively add the necessary terms to the quadratic nonlinearity - a s X Y .  The terms 
-b3 Y and - c a Z  must appear for the reason mentioned above. In appendix A it can 
be seen that in addition to the requirement alE <0  the elements a23 and a31 of the 
Jacobian must be larger than zero for TK + D = 0. Therefore, the differential equa- 
tions for the minimal system with Hopf  bifurcation must include the following 
terms: 

. . . .  - a5XY,  

}r --__ _ b3 Y -k b 4 Z  , 

= c 2 2 . -  caN  , 

ai, bi, ci > 0.  (35) 

Obviously, in Y at least one positive summand must be added in order to make a 
positive steady state possible. It is shown in the appendix B that for a Hopf  bifurca- 
tion in case (35) a positive term a22. must exist in X. This can only be realized 
with a bimolecular autocatalytic reaction 2. + A --~ 2." + 2". In the sense of point 3 
and 4 of the characterization of the smallest system, the easiest representation 
therefore is system (8) shown in scheme 1. The minimal number of reactions can be 
reached when b4 = c4 (reaction Z--~ Y) and the lowest number of bimolecular reac- 
tions if the term c22. represents a monomolecular reaction 2.--~ Z, so that a22. con- 
sists of two summands, one resulting from the degradation of X and the other 
from the autocatalytic reaction. 

4. Discuss ion 

In the present paper the mathematically smallest chemical reaction system with 
Hopf  bifurcation is deduced. From the mathematical point of view the given sys- 
tem shows some similarities to the well known system proposed by R6ssler [12], 
since it also is a three-dimensional one with only one quadratic nonlinearity. How- 
ever, the R6ssler system cannot be interpreted as a chemical reaction system, 
because the trajectories are not confined to the positive orthant. 

We have shown that there is only one system which satisfies all conditions for a 
minimal system according to the characterization given at the beginning of sec- 
tion 2. Point 4 demands the lowest number of bimolecular reactions. If this point 
were replaced by the requirement of minimal number of  summands at the right side o f  
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the differential equations, which would more consequently aim at mathematical 
simplicity, the resulting system would closely be related to that given in eqs. (8) with 
the only difference that the monomolecular reaction X ~ Z would be replaced by 
X + A ~ X + Z, so that the whole system would have three bimolecular reactions. 
Nevertheless, if one compares the resulting reaction scheme with that given in 
Scheme 1 it is reasonable to characterize the system represented by eqs. (8) as the 
most simple one. 

A smallest system in the physical sense would be defined by the characterization 
given in section 2 if point 2 which demands the lowest number of quadratic terms, 
were cancelled. The present analysis does not exclude the possibility of an oscillat- 
ing system with, for example, four reactions and more than one nonlinearity. All 
these systems discussed so far are idealized insofar as they contain irreversible reac- 
tions which in a strong thermodynamic sense do not exist. This raises the question 
for the smallest chemical system with the lowest number of reversible reactions 
only. However, if there were a system with less than 5 reactions, reversible or irre- 
versible, which could show a Hopf  bifurcation, it follows from the present analysis 
that in the sense of the given characterization of the smallest system it would mathe- 
matically be more difficult. 

It is shown in the appendix that for system (35) the existence of an autocatalytic 
reaction is a necessary condition for a Hopf  bifurcation. This is in agreement with 
the general statement that for the occurrence of oscillations a chemical reaction sys- 
tem must contain some kind of autocatalytic or negative feedback reaction. The 
bifurcation diagram in fig. 1 shows that a sufficiently large velocity constant kl A of 
the autocatalytic bimolecular reaction is necessary for oscillations, whereas high 
rate constants of the three monomolecular reactions tend to stabilize the system. 

The proof of the stability of the periodic orbit of system (8) is a still pending prob- 
lem. Since only one of the coupled differential equations has a nonlinearity, this 
should be possible by applying the Hopf-Friedrich theory in the explicit algebraic 
form (see e.g. MacDonald [13], Poore [14]). 

The given system could also be of biological interest. It can be interpreted, e.g., 
as an oscillation model in population kinetics. X could denote the parental genera- 
tion which produces the descendants Y over an intermediate Z, whereas Y extermi- 
nates its parents X. 

However, the concept of analysing and discussing minimal systems in different 
senses and for different purposes seems to be promising in order to tackle the prob- 
lem of the relation between the structural complexity and the dynamical behavior 
of systems. 
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Appendix A 

In this appendix it will be proven in two independent  parts that  in case (25b) 
a31 > 0 as well as a23 > 0 are necessary conditions for TK + D = O. 

The most  general system is represented by the equations 

J( = alA 4- a2X + a3 Y + a4Z - a s X Y  , 

~Y = biB + b2X - b3 Y q- b a Z ,  

= c lC  + c2X + c3 Y - cnZ (A.1) 

with 

ai, bi, ci>/O for i = 1,2, 

a3~ a4~ b4~ c3 i > 0  

. 

as, b3~ c4 > 0. 

A three-component reaction system with the nonlinearity following f rom the reac- 
tion o f  case (25b) cannot have a Hopfbifurcation / f  a31 = 0: 

The term T K  + D of  system (A. 1) reads if a31 = c2 = 0: 

T K  + D = a l l  ( a 1 2 a 2 1  + a 2 3 a 3 2  - -  a l l a 2 2  - -  a l l a 3 3  - -  a 2 2 a 3 3 )  

+ a22(a12a21 + a 2 3 a 3 2  - -  a l i a 2 2  - -  a l i a 3 3  - -  a 2 2 a 3 3 )  

+ a33(a12a21 + a 2 3 a 3 2  - -  a l i a 2 2  - -  a l i a 3 3  - -  a 2 2 a 3 3 )  

+ alla22a33 + a13a21a32 -- a12a21a33 --alla23a32.  (A.2) 

The sum of  the underl ined terms is zero. According to a result of  section 3 a12 
---- a 3  - -  a5-'~ < 0 is a necessary condition for a H o p f  bifurcat ion in this case so that  
the only negative summands  which can appear in (A.2) are a22a23a32 and a33a23a32. 
For  T K  + D = 0 it is, therefore, necessary that  

a 2 3 a 3 2 / >  a 2 2 a 3 3  • (A.3) 

It is shown now that  (A.3) is in contradict ion to other  necessary conditions for a 
H o p f  bifurcation. The following two cases are distinguished: a) a21 = b2 = 0 and 
b) a21 = b2 > 0. 

Case (a). The determinant  D of  the Jacobian at a s teady state o f  system (A. 1) is 

O = ( q - a 2  - a5  ~ r ) ( b 3 c 4  - b 4 c 3 )  • (m.4) 

For  D < 0  it is necessary that  all = + a 2 - a s ~ ' < 0  and b3c4---a22a33>a23a32 
= b4c 3 which is in contradict ion to (A.3). 

Case (b). F r o m  (A. 1) follows for positive steady state concentrat ions  

b 4 Z  
b3 > ~,. , (A.5) 
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C 3 ~ tr 

C 4 ~  if7 , 

a n d  t h e r e f o r e  b3c4 - -  a22a33  > a 2 3 a 3 2  = b4c3 w h i c h  c o n t r a d i c t s  (A.3). 

(A.6) 

2. A three-component reaction system with the nonlinearity following from the reac- 
tion of  case (25b) cannot have a Hopfbifurcation /f  a23 = 0: 

The  te rm TK + D of  system (A. 1) reads if a23 = b4 = 0: 

TK + D = a l l  ( a12a21  q- a l 3 a 3 1  - a l i a 2 2  - a l i a 3 3  - a 2 2 a 3 3 )  

-k- a22(a12a21 -t- a l a a 3 1  - a l i a 2 2  - a l l a a 3  - a 2 2 a 3 3 )  

-t- a33 ( a l 2 a 2 1  q- a l 3 a 3 1  - a l  1 a22 - a l  1 a33 - a 2 2 a 3 3 )  

+ alla22a33 q- alaa21a32 - alEa21a33 - a13a22a31 • (A.7) 

The  sum of  the under l ined  terms is zero. With  a 1 2 < 0  in (A.7) only the terms 
allalaa31 and a33a13aal may  be negative. For  TK + D = 0 it is, therefore,  necessary 
tha t  

a13a31  > a l l a 3 3  • (A.8) 

Case (a) a21 = b2 = 0: The  de te rminant  D of  the Jacobian at s teady state is 

D = - b 3  ( c 4 ( a 5  ~r -4- a 2 )  - a 4 c 2 )  • (m.9) 

For  D < 0 it is necessary tha t  all = +a2 -- a5 I" < 0 and  c 4 ( a 5  Y -t- a 2 )  = a33all 
> a13a31  = a4c2 which contradicts  condi t ion (A.8). 

Case (b) a21 = b2 > 0: In the s teady state it is 

a3 a2b3 a4c3 aab3c.______~2~ alAb3 a3blB aablBc3 

a5 asb2 a5c4 asb2c4J asb2 asb2 a5b2c4 
2 " ( b i B  2"2 + 

a4b3Cl C 

asb2c4 
therefore  

2"1<0 for all a l lowed paramete r  values ,  

)22 -=~-=a~+a2b3 a4c3 a4b3c2 biB ---;-+ + - -  ~ v,  
a5 a5o2 a5c4 asb2c4 b2 

With  

~,, _ b22. + biB 

b3 

it follows tha t  

Y2 = a2 -t- a3b2 
a5 ~ + 

a4c2 a4b2c3 + + ~ ,  
a5 c4 

~3>0. 

(A.IO) 

v > 0 .  

(A.11) 

(A.12) 

(A.13) 

(A.14) 
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Since 

a13a31 : a4c2, 

alla33 ----- a5c4 Y2 - a2c4, 

one obtains with (A. 14) al3a31 ~< alla33 which completes the proof. 

13 

(A.15) 

(A.16) 

Appendix  B 

The most general form of the minimal system (3 5) is 

J~ = alA + a2 X + a3 Y -t- aaZ - a s X Y  , 

jr = _ b3 Y + b4Z,  

2 = c 2 X  - c 4 Z ,  

alA, a3, a4 >~0 , 

as, b3, b4, C2, C4 > 0 .  (B.1) 

In the following the proof is given that a2 > 0 is a necessary condition for a Hopf  
bifurcation in this system: 

In the steady state it is 

(a2b3c4 + a3b4c2 -k- anb3c2 

~/(a2b3c4 q- a3b4c2 q- a4b3c2) 2 q- 4alasb3b4c2c4A) /(2asb3c4) , (B.2) + 

i.e. 

I"1 ~< 0 for all allowed parameter values, (B.3) 

Y2 --- a2 q- a4c2 + a3b4c2 
- - +  w 

a5 a 5 c 4  a5b3c4 
>0 .  (B.4) 

The possibility for a Hopf bifurcation at the positive steady state must be proven. 
With 

b3c4 ~r2, (n.5)  
X-2 - b-4c2 

the Jacobian of the system at this point is 

a~b~c4 ~r 2 a4 ) a2 -- a5 It2 a3 -- b4c2 

J = 0 -b3 b4 , (B.6) 

C 2 0 --C4 



14 

therefore, 

and 

T. Wilhelm, R. Heinrich / Smallest system with Hopfbifurcation 

T = a2 - a5 Y2 - b3 - -  C4 

K = a 4 c 2 + a 2 b 3 ÷ a 2 c 4  - as Y2b3 - as Y2c4 - b3c4,  

D = a 2 b 3 c 4 + a 3 b a c 2 + a a b 3 c 2  - 2as}r2b3c4 

(B.7) 

(B.8) 

(B.9) 

T K  + D = a 2 K  

+ a5 Y2(-  a4c2 - -a2b3  -~  a2c4 + a5 }r2b3 + a5 ~tr2¢4 ÷ b3c4) 

+ b3( . -  a4c2 - a2b3 - a2c4 + as Y2b3 + a5 ~rr2c4 ÷ b3c4) 

+ c4(--a4c2 -- a2b3 - a2c4 + as Y2b3 + a5 Y2c4 ÷ b3c4) 

+ azb3c4 + a364c2 + a4b3c2 - 2a5 Y2b3c4 • (B. 10) 

The sum of the underlined terms is zero. From (B.4) it follows 

a3bac2 
asiZ2c4=a2c4+a4c2q b3 t-# (#~>0). (B.11) 

Therefore, the sum of the overlined terms is larger than or equal zero for all 
allowed parameter values and together with the necessary condition K < 0 it fol- 
lows that TK + D can only be zero if a2 > 0. 
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